Binary tree implementation in java

This post will teach you how to implement a binary tree in java and perform the following functions on it.

  • insert - Inserts the elements to binary tree
  • printInOrder - To print the inorder elements of the binary tree
  • maxDepth and minDepth - To find whether a tree is balanced or not
  • commonAncestor - To find the common ancestor between two nodes
  • findSum - to find all paths whose sum is equal to the given sum
  • addToTree - To insert elements to the tree in such a way that there will be minimum number of leaves.
  • findLevelLinkedList - To find elements in each level
The java program is as follows:


package com.algorithm;

import java.util.ArrayList;
import java.util.LinkedList;

public class binaryTree {

 public static void main(String args[])

 {

  new binaryTree().run();

 }

 public static class Node

 {

  Node left;

  Node right;

  int value;

  public Node(int value)

  {

   this.value = value;

  }

 }

 public void run()

 {

  Node rootnode = new Node(25);

  insert(rootnode, 11);

  insert(rootnode, 15);

  insert(rootnode, 20);

  insert(rootnode, 6);

  insert(rootnode, 16);

  insert(rootnode, -16);

  insert(rootnode, 23);

  insert(rootnode, 79);

  insert(rootnode, -23);

  printInOrder(rootnode);

  int maxdeep = maxDepth(rootnode);

  int mindeep = minDepth(rootnode);

  System.out.println(" Maxdepth = " + maxdeep + " mindepth = " + mindeep);

  int diff = maxdeep - mindeep;

  if (diff <= 1)

  {

   System.out.println(" The tree is balanced...");

  }

  else

  {

   System.out.println(" The tree is not balanced...");

  }

  // to insert an array to tree

  int array[] = { 1, 2, 3, 4, 5, 6, 7, 12, 13, 14 };

  Node arrnode = addToTree(array, 0, array.length - 1);

  printInOrder(arrnode);

  ArrayList<LinkedList<Node>> lss = findLevelLinkedList(rootnode);

  // common ancestor

  Node common = commonAncester(arrnode, new Node(4), new Node(14));

  System.out.println(" The common node = " + common.value);

  // level of a tree

  int level1 = maxDepth(rootnode) - 1;

  System.out.println(" level of the tree = " + level1);

  // to find the sum of the tree

  System.out.println(" Finding the sum of the tree..");

  ArrayList<Integer> coolbuffer = new ArrayList<Integer>();

  findSum(rootnode, 26, coolbuffer, 0);

 }

 public void insert(Node node, int value)

 {

  if (value < node.value)

  {

   if (node.left != null)

   {

    insert(node.left, value);

   }

   else

   {

    node.left = new Node(value);

   }

  }

  else

  {

   if (node.right != null)

   {

    insert(node.right, value);

   }

   else

   {

    node.right = new Node(value);

   }

  }

 }

 // code for inorder

 public void printInOrder(Node node)

 {

  if (node != null)

  {

   printInOrder(node.left);

   System.out.println("Traversed " + node.value);

   printInOrder(node.right);

  }

 }

 // code to find the maximum depth

 public static int maxDepth(Node node)

 {

  if (node == null)

   return 0;

  return 1 + Math.max(maxDepth(node.left), maxDepth(node.right));

 }

 // code to find the minimum depth

 public static int minDepth(Node node)

 {

  if (node == null)

   return 0;

  return 1 + Math.min(minDepth(node.left), minDepth(node.right));

 }

 // code for add to tree

 public static Node addToTree(int arr[], int start, int end)

 {

  if (end < start)

  {

   return null;

  }

  else

  {

   int mid = (end + start) / 2;

   Node newnode = new Node(arr[mid]);

   newnode.left = addToTree(arr, start, mid - 1);

   newnode.right = addToTree(arr, mid + 1, end);

   return newnode;

  }

 }

 // code to find elements in each level

 public ArrayList<LinkedList<Node>> findLevelLinkedList(Node node)

 {

  int level = 0;

  ArrayList<LinkedList<Node>> result = new ArrayList<LinkedList<Node>>();

  LinkedList<Node> list = new LinkedList<Node>();

  list.add(node);

  result.add(level, list);

  while (true)

  {

   list = new LinkedList<Node>();

   for (int i = 0; i < result.get(level).size(); i++)

   {

    Node n = (Node) result.get(level).get(i);

    if (n != null)

    {

     if (n.left != null)
      list.add(n.left);

     if (n.right != null)
      list.add(n.right);

    }

   }

   if (list.size() > 0)

   {

    result.add(level + 1, list);

   }

   else

   {

    break;

   }

   level++;

  }

  return result;

 }

 // code to find the common ancestors in the list

 public Node commonAncester(Node node, Node p, Node q)

 {

  if (covers(node.left, p) && covers(node.left, q))

  {

   return commonAncester(node.left, p, q);

  }

  if (covers(node.right, p) && covers(node.right, q))

  {

   return commonAncester(node.right, p, q);

  }

  return node;

 }

 public boolean covers(Node node, Node p)

 {

  if (node == null)

  {

   return false;

  }

  if (node == p)

  {

   return true;

  }

  return (covers(node.left, p) || covers(node.right, p));

 }

 // find all path whose sum is equal to the given sum

 public void findSum(Node node, int sum, ArrayList<Integer> buffer, int level)

 {

  if (node == null)

   return;

  int temp = sum;

  buffer.add(node.value);

  for (int i = level; i > -1; i--)

  {

   // System.out.println(" Level = "+i);

   temp -= buffer.get(i);

   // System.out.println(" Temp ="+temp);

   if (temp == 0)

   {

    print(buffer, i, level);

   }

  }

  ArrayList<Integer> c1 = (ArrayList<Integer>) buffer.clone();

  ArrayList<Integer> c2 = (ArrayList<Integer>) buffer.clone();

  findSum(node.left, sum, c1, level + 1);

  findSum(node.right, sum, c2, level + 1);

 }

 public void print(ArrayList<Integer> buffer, int level, int i2)

 {

  for (int i = level; i <= i2; i++)

  {

   System.out.println(buffer.get(i) + " ");

  }

  System.out.println();

 }

}

Similar programs like this:

1) Linked list implementation in Java
2) Java program to check if a string is a Pangram
3) For each method in Java 8

Comments

Popular posts from this blog

Difference between "diff" and "sdiff" commands in Unix

Important annotations used in Hibernate